NASA | Comparing CMEs

This video features two model runs. One looks at a moderate coronal mass ejection (CME) from 2006. The second run examines the consequences of a large coronal mass ejection, such as The Carrington-Class CME of 1859. These model runs allow us to estimate consequences of a large event hitting Earth, so we can better protect power grids and satellites.

In an effort to understand and predict the impact of space weather events on Earth, the Community-Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center, routinely runs computer models of the many historical events. These model runs are then compared to actual data to determine ways to improve the model, and therefore forecasts of future space weather events.

Sometimes we need an actual event to have data for comparison. Extreme space weather events are one example where researchers must test models with a rather limited set of data.

The vertical lines on the left represent magnetic field lines from the sun.

This video is public domain and can be downloaded at: http://svs.gsfc.nasa.gov/goto?11660

 On September 1–2, 1859, one of the largest recorded geomagnetic storms (as recorded by ground-based magnetometers) occurred. Aurorae were seen around the world, those in the northern hemisphere even as far south as the Caribbean; those over the Rocky Mountains were so bright that their glow awoke gold miners, who began preparing breakfast because they thought it was morning. People who happened to be awake in the northeastern US could read a newspaper by the aurora’s light.

The aurora was visible as far from the poles as Cuba and Hawaii. Telegraph systems all over Europe and North America failed, in some cases giving telegraph operators electric shocks. On Saturday, September 3, 1859, the Baltimore American and Commercial Advertiser reported, “Those who happened to be out late on Thursday night had an opportunity of witnessing another magnificent display of the auroral lights.

The phenomenon was very similar to the display on Sunday night, though at times the light was, if possible, more brilliant, and the prismatic hues more varied and gorgeous. The light appeared to cover the whole firmament, apparently like a luminous cloud, through which the stars of the larger magnitude indistinctly shone. The light was greater than that of the moon at its full, but had an indescribable softness and delicacy that seemed to envelop everything upon which it rested.

Between 12 and 1 o’clock, when the display was at its full brilliancy, the quiet streets of the city resting under this strange light, presented a beautiful as well as singular appearance.” In 1859, the world was far less reliant on electricity and certainly of satellite communications. In June 2013, a joint venture from researchers at Lloyd’s of London and Atmospheric and Environmental Research (AER) in the United States used data from the Carrington Event to estimate the current cost of a similar event to the US alone at $0.6–2.6 trillion. 

If you wish you can Leave a Reply. We will publish it after moderation. Insults and Spam are automatically deleted. Thank you for visiting my blog today.

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: